実験外動物用 MRI システム MRI システム MRI VIVOLVA®マニュアル

Japan REDOX

目次

Ι.	MRViv	voLVA 概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	I-1.	MRVivoLVA ®設置例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	I-2.	小動物用 MRI のシステム構成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	I-3.	MRI コンソール部 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	I-4 .	磁気回路部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	I-5.	冷却ユニット(磁気回路、コンソール)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	I-6.	RF コイル部 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	I-7.	操作卓部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	I-8.	撮像の流れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
II.	撮像の)準備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
	II-1.	撮像の準備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.0
	II-2.	MRI コンソールとの接続 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.1
	II-3.	システムの起動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.2
	II-4.	標準サンプルのセット ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.3
	II-5.	撮像サンプル(動物)の固定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.4
	II-6.	RF コイルの調整(共鳴周波数調整) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.5
	-	-6-1. 調整の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.5
	11-	-6-2. VNA の画面の見方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.6
	11-	-6-3. チューニング・マッチング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.7
	II-7.	RF コイルの磁気回路へのセット ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.8
III.	撮像の	つための調整 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
	III-1.	調整の流れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.9
	III-2.	MRI 信号の確認 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
	III-3.	TX ゲイン (送信ゲイン) 調整 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 1
	111-4.	Projection Shim(シム調整【自動調整】)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.4

	III-5. Shim Adjust(シム調整【手動調整】) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
IV.	撮像 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	IV-1. SCANOGRAM • • • • • • • • • • • • • • • • • • •	
	IV-2. 本撮像 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	IV-2-1. プリセット(シークエンス)の選択 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・30	
	IV-2-2. 微調整 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	IV-2-3. 撮像断面について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	IV-2-4. 撮像画像の確認 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
V.	データ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	V-1. ファイル保存 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	V-2. ファイルのエクスポート ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	V-3. 画像サイズについて ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	V-4. ImageJ にインポートする ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
VI.	便利な機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	VI-1. 【マルチビュー】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	VI-2. 【拡大縮小機能】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	VI-2-1. 画面表示の拡大縮小 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	VI-2-2. 画面のコピー方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
VII.	資料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	VII-1. MRVivoLVA シークエンス例(デフォルトシークエンスセット) ・・・・・・・・・・・・・・・・・・・42	
	VII-1-1. HOME • • • • • • • • • • • • • • • • • • •	
	VII-1-2. 2D系 ···································	
	VII-1-3. 3D 系 ••••••••••••••••••••••••••••••••••	
	VII-1-4. FSE •••••••••••••••••••••••••••••••••••	
	VII-2. タブ例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

VII-2-1.	Generic タブ [2D] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
VII-2-2.	Generic タブ [3D] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
VII-2-3.	Acquisition/Encode タブ例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
VII-3. 3D 解	析ソフトのご紹介・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
VII-4. (ご参	考)Realia Pro へのデータインポート時サイズ早見表 ・・・・・・・・・・・・・・・・・・・・・・・・50
VII-5. (ご参	考)撮像パラメータ記載ファイル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・51
VII-5-1.	(.rpf ファイル例① 2D 系シークエンス) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・51
VII-5-2.	(.rpf ファイル例② 3D 系シークエンス) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・52

実験小動物用 MRI [MR VivoLVA[®]] 使用上の注意事項

注意事項

MR VivoLVA[®]は実験小動物 (マウス・ラット)用の MRI です。臨床用の MRI に比べると比較 的磁場の影響を受ける範囲が小さいですが、不注意により重大な危険を引き起こす場合があ ります。

ご使用にあたり、以下の事項について十分にご注意下さい。

- ◆ 心臓ペースメーカーを装着されている方の使用は禁止です。
- ◆ 磁石部半径 1m 以内(漏洩磁場 5 ガウスライン)に、磁気カード(キャッシュカード、 クレジットカード、プリペイカード等)類、携帯電話、時計等の持ち込みは禁止です。デー タが消えたり故障の原因となります。特にスマートホンやカード類は、ポケットに入れ たまま気づかないことがあるので注意してください。
- ◆ 小さな磁性体などが、磁石の中に入ってしまうと磁石に重大な影響を及ぼし故障の原因 となります。

磁石にひきつけられるものの例:ホッチキス、クリップ、ヘアピン、ハサミ、ピンセッ ト等

◆磁性体を含む物を持っていたり近くにある場合、強い力で引き寄せられる際に身体が傷 ついたり、刺さるなどして大けがをする可能性があります。
このマニュアルについて

本資料は、実験小動物用 MRI[『]MR VivoLVA ®』の撮像操作手順をまとめたものです。 掲載されている写真や操作画面は一例を示しています。そのため、お使いの製品 と異なる場合があります。

I. MRVivoLVA 概要 I-1. MRVivoLVA ®設置例

磁気回路部拡大画像

I.MRVivoLVA 概要

I-2. 小動物用 MRI のシステム構成

小動物用 MRI は、サンプルを入れる永久磁気回路部と MR 信号の受信を PC やアンプ等で制御する コンソール部から構成されています。

I.MRVivoLVA 概要

I-3. MRI コンソール部

各部の名称および主な機能

①勾配磁場コイル温度モニタ装置

[勾配磁場コイルの温度をモニタし、コイルが一定の温度以上に なると空冷ファンを動作させて、冷却する制御装置]

② 温度制御装置

[マグネットの温度を一定に保つ装置]

③ 送受信装置

[MRI 撮像に必要なパルスを各アンプに送出し、また NMR 信号の受信を行う装置]

④ サーバコンピュータ

[各ユニットの制御を行い、クライアントコンピュータとの通信 を LAN を通じて行う]

⑤ パワーアンプ

[NMR の励起パルスを出力する装置]

⑥勾配磁場電源(3台)

[勾配磁場コイルへ電流を流す装置]

*各部詳細は「ハードウェア取扱説明書」をご参照下さい

I-4. 磁気回路部

磁気回路

強力で極めて均一な磁場を発生する永久磁石式磁気回路です。 開口部に、小動物を RF コイルをセットした後、RF コイルを開口 部中央部に入れて撮像を行います。

RF コイル

RF コイル接続コネクタ

撮像動物および撮像部位によって最 RF コイルからのケーブルを接続する場所。 適なものに変更して使用します。 RF コイルをガイドレールに沿ってセット

した後に、ケーブルを確実に接続します。

ガイドレール

RF コイルを磁場の中心に位置決め するためのレールです。

磁気回路開口部

I-5. 冷却ユニット(磁気回路、コンソール)

電源スイッチ

実験開始時に ON にします。

コントローラ

- 上段(赤の LED): 勾配磁場コイルの温度
- 下段(緑の LED):空冷ファン動作開始温度

(通常 32°Cに設定)

※通常、設定値の変更は行わないでください。

磁気回路側

コンソール側

勾配磁場コイル温度モニタ装置は、勾配磁場コイルの温度をモニタし、必要に応じて空冷ファ ンを動作させる装置です。勾配磁場コイルの温度が 32℃以上になれば、マグネット部下部 に設置した空冷ファンが動作します。この風はマグネット側面に設けたエアダクトを通じて、 勾配磁場コイルを冷却します。勾配磁場コイルの温度が 30.0℃に下がれば、空冷ファンは 停止します。本装置は、勾配磁場コイルを冷却するのに有効な装置ですが、過度な温度上昇 には対応できません。勾配磁場コイルの温度が、40℃以上になると強制的に勾配磁場電源 からの出力を停止します。このときに実行していた撮像データは得られません。一旦温度が 40℃以上になった場合、装置保護のため、31.5℃以下に下がらないと、勾配磁場電源は動作 しない設定になっています。

注意

勾配磁場コイルの温度が、<mark>40.0℃</mark>以上になった場合、勾配磁場電源からの出力が停止します。 一旦このような状況になった場合、**31.5℃**以下になるまで、勾配磁場電源は動作しません。

I-6. RF コイル部

動物 (対象部位) に応じた RF コイルを選択 します。 小動物は、あらかじめ麻酔をかけた状態でサンプルホルダーに テープで固定し、RF コイルのベッド部にセットします。位置決 めはベッド部の目盛を参考にして行います。

操作卓部の PC で MRI 撮像ソフトウェア "Medalist"を起動し、撮像条件等を入力し撮 像を行います。本システムは、デュアルモニ タを採用していますので、例えば、左側の液 晶モニタで撮像を行いながら、右側のモニタ で他のソフトウェアを用いて撮像データの確 認や 3D 化などを行うことが可能です。 操作卓と MRI ユニットはスイッチングハブを 介して LAN ケーブルで接続されています。

操作側 PC(Windows10 64bit 版)

注意

本システムは、インターネットや組織内 LAN などのネットワークに接続することを前 提としておりません。もし、ネットワークに接続する場合は、組織のシステム管理者 にご相談ください。

(1)

I-8. 撮像の流れ

① MRVivoLVA システムの起動

Medalist を起動し、システムを起動する

②動物の準備

動物に必要に応じて麻酔をかけサンプルホルダーに固定する

③動物の麻酔

維持麻酔にガス麻酔を使用する際には、ガス麻酔装置を起動させ、サンプルホ ルダーに接続されたチューブと麻酔装置のチューブを接続する。

- ④ 動物のセッティング
 - サンプルホルダーに固定した動物を RF コイルに入れ RF コイルのチューニング を行う。

『小動物用 RF コイル調整マニュアル』参照

⑤ マグネット部へのセッティング

RF コイルチューニング後、磁気回路内に RF コイルと動物を入れる。

⑥ MRI 撮像のための各調整

PC よりソフトウェア (Medalist)を起動し、共鳴周波数、シム、TX ゲイン調 整を行う。

『Medalist ユーザーズマニュアル』参照

⑦ MRI 撮像開始

仮撮像を行い、撮像位置を微調整した後、本撮像を開始する。

① Medalist 起動 (MRI コンソールソフトウェア「Medalist」使用)

マント Medalist64 - ショー トカット デスクトップ上の「Medalist64 ショートカット」 をダブルクリックしソフトを起動します。

③ Medalist 起動時画面

II-2. MRI コンソールとの接続

🎒 | 🗋 💕 🛃 🦂 🕫

	<u> </u>	<u></u> ₩−Δ	ポストプロセス	解析	ツール					
	& Cor C	nnect • onnect	F				M	Fix)		☑ MRモ
I	P 192.	168.11.38	六城奋/-	J1ル リノノ (Ma 其大場	ルロートオート nual) (Autor 品作	ロート 囲1家 matic)	新祖堤(1機能描い。 	マルナビュー	✓ プロバ 表示
	WIN.	spectromet		25/4/13	RIF		49175763481	21	, R	12/1

① ソフト画面左上「Connect」をクリックし

ます。

MRモニタ ■ MRモニタ ■ ▲ MRステータス MRステータス MRステータス MRジョブ MR Not Connection MR Ready Cancel Cancel

未接続状態

② 画面右上部 MR ステータスが青くなり、「MR

Active」の表示が出れば接続成功です。

||-3. システムの起動

🎒 🗅 📂 🛃 🌍) -			
新 → ホーム	ポストプロセス	解析	ツール	
🔗 Connect 🝷	# 1			
IP 192.168.11.38	共振器/□1	バル サンプ (Ma	ルロードオ・ inual) (Au	-トロード Itomatic)
第一① 💕 🚽 🌐 = ◎ - ホーム ポストプロセス 🧌	これ ツール			
 新規作成(図) 新規作成(図) 第以作成(図) 2 CiU 3 CiU 3 CiU 3 CiU 		○ 23 23 23 24 34 34 34 34 34 34 34 34 34 3	2	
Preference Gradent General Gradent DEICC Log Information Gradent DDiton Automatic Control RF-Coll Parameter Limitation Setup Sequence Option Sequence Option Sequence Option	General Information Console Name Access Key Operation Setting ☑ Enable OpenFileFo ☑ Enable GeorgeOpenFileFo	RosettaDefault		Magnet Information MRI Field strength (Tesla) Offset Field strength (mT IH Lamor Frequency (MH e- Lamor Frequency (GHz) Center Frequency(MHz) Lock Nuclei
Nuclei Table	Heap Memory Index	x(MB)	12000.00	Spectrometer

- ソフト左上のロゴマークをクリックします。
 オプションをクリックすると [Preference] が開く ので、[Emergency Control]の [PWR_ON] をクリッ クするとシステム (パワーアンプ、勾配磁場電源(3 台))の電源が入ります。
- ③ [OK] ボタンをクリックして閉じます。

Generic	General Information	Magnet Information	
- Gradient General	ocher di amonina don		
Gradient DECC	Console Name RosettaDefault	MRI Field strength (Tesla)	1.524231262991
Log Information	Access Key	Offset Field strength (mTesla)	0.93090403
- Gradient Option - Automatic Control		1H Lamor Frequency (MHz/T)	42.576374
		e-Lamor Frequency (GHz/T)	28024.945313
Limitation Setup Sequence Option	Operation Setting	Center Frequency(MHz)	64.936180114627
PrePulse Option 2	Enable OpenFileFormat	Lock Nuclei	1H(H2O) ~
Solver Option	Enable GavageCollector		
Nuclei Table	Heap Memory Index(MB) 12000.00	Spectrometer	
	Performance coriously down care of under 2000MR	O Direct Conversion	
	Performance seriously down case of under 2000mb	Single Heterodine	
	Enable CUDA(R)	IF Frequency(MHz)	20.000000
	Target CUDA Device	O Double Heterodine	
	CUDA(R) Technology Powered by NVIDIA(R)	IF1 Frequency(MHz)	20,500000
		IF2 Frequency(MHz)	710.000000
		Heterorine Pass-Si	deband
	Emergency Control		er Sideband
	Emergency STOP ServerDown HostDown	() Lov	er Sideband
	PWR ON PWR OFF SpectReset		
		California (CEDDI Current)	
	PWR ON	Esk Mode(PEDRI Support)	
	_		
			OK キャンセル

II-4. 標準サンプルのセット 検出器に標準サンプルをセットします。

点線の位置が最も感度が高い部分なので、そこにサンプルの中央がくるように置きます。

② ガイドがあたるまでサンプルを入れます。

II.撮像の準備

標準サンプル 図のように、φ 10mm × 10 mmに標準液が入っ ています。

II.撮像の準備

II-5. 撮像サンプル(動物)の固定

① 動物に麻酔をかけます。(生きている動物を撮像する場合)

 湿撮像する動物の大きさ、部位によって最 適な RF コイルを選択します。

③ 麻酔ホルダーに動物を固定します。

II-6. RF コイルの調整(共鳴周波数調整)

シグナルノイズ比 (S/N 比) の高い MRI 画像を取得するために RF コ イルの共鳴周波数を合わせます (=チューニング・マッチング)。撮 像サンプルを変えるたびに調整してください。

II-6-1. 調整の概要

- RF コイルにサンプルをセッティングして磁気回路へセットします。完全にセットすると調整がしにくい場合は手前に出して調整を行います。
- ② RF コイルと Nano VNA-F V2 (以下 VNA)を接続します。
- ③ VNA の電源を ON にします。
- ④ 調整用ドライバーで Ct/Cm のネジを動かして調整を行います。

RF コイル調整用ネジ

Nano VNA-F V2

調整用ドライバー (非磁性ドライバー)

II. 撮像の準備

II-6-2. VNA の画面の見方

LOGMAG(黄色)とスミスチャート(水色)が表示されます。

マーカー11は最小値に追随するように設定しています。このマーカーを見ながらネジを回します。

- ① LOGMAG 表示を見ながらマーカーが 64.9MHz(共鳴周波数) に近づくように Ct ネジを回します。
- スミスチャートを見ながらマーカーが円の中心に近づくよう
 に Cm ネジを回します。
- ③①と②を繰り返してマーカーが LOGMAG では 64.9MHz に、
 スミスチャートでは円の中心にくれば調整が完了です。

マーカーは谷の底になるように動く

LOGMAG 表示

スミスチャート

II-6-3. チューニング・マッチング Cm ネジ:マッチング LOGMAG:谷の形の鋭さが変化します。 時計回り→幅広く、周波数低く 反時計回り→鋭く、周波数高く スミスチャート:円の大きさが変化します。 時計回り→大きくなる、円自体が時計回りに動く 反時計回り→小さくなる、円自体が反時計回りに動く Ct ネジ:チューニング LOGMAG: 周波数が変化します。 時計回り→周波数低く 反時計回り→周波数高く スミスチャート:円が回ります。 時計回り→円自体が時計回りに動く

反時計回り→円自体が反時計回りに動く

チューニング / マッチングはそれぞれのネジで主に行われますが、独立しているのではなく、Ct もマッチングに Cm もチューニングに影響を与えます。

どちらかだけを動かし続けるのではなく、交互にバラン スよく動かして調整を行うようにしてください。

II-7. RF コイルの磁気回路へのセット

RF コイルセッティング例 (正面)

RF コイルセッティング例(側面)

RF コイルの磁気回路部への接続例

- RF コイルを磁気回路内のガイドレールに沿って ゆっくりと挿入し、ストッパーの止まる所まで確実 にセットします。(麻酔チューブがガイドレールに 絡んでいないかをチェックします。)
- ② RF コイルの接続ケーブルを磁気回路前面部の接続 端子 (BNC 端子) に確実に接続します。

III. 撮像のための調整

III. 撮像のための調整

MR VivoLVA[®]は、コンソールソフトウェア「Medalist」を使用して MR 画像を取得します。 操作方法詳細については、「Medalist ユーザーズガイド」をご参照下さい。 ここでは使用頻度の高い SCANOGRAM から 2D-GE 法で撮像する方法をご説明します。

|||-1. 調整の流れ

撮像の前には調整が必要です。調整が不完全なまま撮像を行うと、想定する画像を撮像することはできません。 しっかりと調整を行って撮像に進んでください。

①通常は測定するサンプルで調整をします。

マウスやラットで撮像をする場合は、個体が変わるごとに調整を行ってください。

② Tx 調整を行い、ProjectionShim をします。

③ ProjectionShim を 3 回やって収束しない場合は ShimAdjust を行います。

④ 合わせにくいサンプルの場合は標準サンプルで Projection Shim を行います。

⑤ 測定するサンプルで Tx 調整を行います。

III. 撮像のための調整III-2. MRI 信号の確認

MRI 信号を確認することから調整を始めます。

- MR ステータスが青くなり「MR Active」の状態 になっていることを確認します。撮像サンプル が正しく磁気回路内にセットされていることを 確認し、「サンプルロード」をクリックします。
- (2) 「Frequency Adjust」 タブ画面右下 [Adjust] ボ タンをクリックします。
- ③ 左図のような信号が現れれば正しくサンプルが セットされています (ピーク形状はサンプルによ り異なります)。

注意!:MRI 信号例 (ピーク形状はサンプルの大きさ形等で色々なパターンがあります)

11. 撮像のための調整

III-3. TX ゲイン (送信ゲイン)調整

Control: Manual Prequency Adjust Nadjust Projection Shim Generic Tra Adjust 今ブ] NMR Frequency(MHz) Tx Adjust 今ブ] NMR Frequency(MHz) Tx Pulse(deg) Rx Gain (dB) 0.00 Relaxation Delay(msec) 3000.0 Coll Factor ID878.7422 ID878.7422 ID878.742188 Coil Factor Arrays Step Start 20 End Generate Gen	Adjust Wizard				>
Frequency Adjus Ix Adjust Projection Shim Generic INFO Ix Adjust \$77 Ix Adjust \$77 MR Frequency(MHz) 64.936180 Ix Pulse(deg) 30.00 Rc Gain (d8) 0.00 Relaxation Delay(msec) 3000.00 Coil Factor 10878.7422 Coil Factor 10878.7422 Image: Step 20 Start 20 End 6enerate Generate Standard MOUSE(40mm) Coil Fie Save 0.0000 Image: Standard MOUSE(40mm) Coil Fie Save	Control: Manual				
Generic INFO 「Tx Adjust タブ」 MMR Frequency(MHz) 64.936180 Tx Pulse(deg) 30.00 Rx Gain (dB) 0.00 Relaxation Delay(msec) 3000.0 Coil Factor 10878.7422 Coil Factor 10878.7422 Arrays Feed Arrays Step End Generate Generate Generate Gaintant MOUSE(40mm) Coll File Save Coll File Save 0.00000	Frequency Adjust Tx Adjust Shim Adjust Projec	tion Shim			
Tx Pulse(deg) 30.00 Rx Gain (dB) 0.00 Relaxation Delay(msec) 3000.0 Coil Factor 10878.7422 Coil Factor 10878.7422 Arrays Feed Arrays End End 800 End 800 End Generate (dbが出力される Coil File Save	Generic INFO [Tx Adjust タブ] NMR Frequency(MHz)	Plot 0.0000	00		
Rx Gain (dB) 0.00 Relaxation Delay(msec) 3000.0 Coil Factor 10878.7422 Coil Factor 10878.7421 Feed 10878.7421 Arrays Feed Arrays Start Start 201 End Generate Generate Generate Generate Standard MOUSE(40mm) Coil File Save	Tx Pulse(deg)	30.00			
Relaxation Delay(msec) 3000.0 Coll Factor 10878.7422 Coil Factor Feed Arrays Feed Arrays Step End 800 End Generate 值が出力される CoilName Standard MOUSE(40mm) Coil File Save 000000 [Adjust]	Rx Gain (dB)	0.00			
Coll Factor Coll Factor Arrays feed Arrays fend fend fend fend fend fend fend fen	Relaxation Delay(msec)	3000.0			
Coil Factor Arrays Arrays 「 Step 20 Start 20 End 800 End Generate 値が出力される CoilName Coil File Save	Coll Factor 10878.7422 10878	3.742188			
Arrays Step 20 Start 20 End Generate 値が出力される CollName Coll File Save	Coil Factor	-eed			
値が出力される ColiName Generate Generate ColiName ColiName ColiName ColiName ColiName ColiName Coli File Save 0.000000 [Adjust]	Arrays Step Start End	20 20 800			
値が出力される CollName Generate Standard MOUSE(40mm) Coll File Save 0.000000 [Adjust]	End Ge	nerate			
Coil File Save	値が出力される _{CoilName} Ger	nerate			
Land Land Land Land Land Land Land Land	Standard MOU:	File Save	00		[Adjuct]
					Aujust

 TX(送信)ゲインを調整します。「TX Adjust」タ ブをクリックし、画面下にある [End] 部分にコ イル毎の End 値を入れます。

	End 值
マウス頭部 (φ 20)	400
マウス全身 (φ 30)	$600 \sim 800$
ラット頭部 (φ 38.5)	$800 \sim 1200$
ラット腹部 (φ50)	$1200 \sim 1600$
ラット腹部 (φ50 × 80)	3000
コイル内のサンプルが大き	もいほど大きい数
値を入れてください	
End 値を入れた後 [Genera	te] ボタンをクリ

 End 値を入れた後 [Generate] ボタンをクリック し、左側の [Arrays] の部分に数値が出力された ことを確認して、[Adjust] ボタンをクリックし ます。

別紙: Medalist マニュアル Ver1b(TX 調整法) もご覧下さい

赤色の点:実測値 緑色の線:フィッティングカーブ III. 撮像のための調整 約1分待つと、左図のようになります。
赤い点が実測値、緑色の線がフィッティングされたカーブを表しています。そのフィッティングから算出された [Coil Factor] が表示されます。

上手くカーブフィットしない場合は、手動で [Coil Factor] を 入力してカーブを実測値の形状に近づけます。

最適な [Coil Factor] は左下の図を参照してください。プロッ

	Coil Factor 值
マウス頭部 (φ 20)	15,000-22,000 程度
マウス全身 (φ 30)	9,000-19,000 程度
ラット頭部 (φ38.5)	6,600-10,500
ラット腹部 (φ50)	4,000-8,000
ラット腹部 (φ50 × 80)	
サンプルが大きいほど Coil	Factor は小さくなります

Coil Factor の入力枠の上にマウスを置いた状態でホイールを回すと数字が変化します。大ま

かな数値を入力した後、ホイールで細かく合わせることができます。

赤い点に緑のフィッティングカーブが合うように [Coil Factor] を調整できれば完了です。

右下のようなカーブフィットが得られれば、[Coil Factor] 値の下の [**Feed**] ボタンをクリック し、[Coil Factor] ボックス内の数値が記入値とあっていることを確認します。

|||. 撮像のための調整

III-4. Projection Shim(シム調整【自動調整】)

Shim タブ]	
Shim タブ]	
	JRX Medalis
	Adjust
	Adju

Control: Manual		
Frequency Adjust Tx Adjust Shim Adjust	Projection Shim	
Generic INFO		PJ
NMR. Frequency(MHz)	64.896904	N ^N
Accumulation(num)	1	
Rx Gain (dB)	0.00	annen anno hannen hannen
Relaxation Delay(msec)	500.0	/M
AcoBW(Hz)	100000.0	
Colored BEO		- menuchangeneration how where we have
C Chim V(mT/m) 0 141787	0.064930	(h
0.341787 4	0.004629	
G.Shim T(m1/m) -0.068205 +	0.21/68/	manunumumumumumumumumumumumumumumumumumu
G.Shim Z(mT/m) 0.334661 +	0.068122	N
Convergence Auto	Feed	N1
Calculation Parameter		manufacture and the manufacture and the manufacture and the second
Glide Field(mT/m) 4.0		AAD (
Glide Time(ms) 10.0		VV V
		- Marian Maria - Mariana
nign-Order Snim		
Z2 0 X2-Y2	0	
XY 0		monimum Marchanenton
X2 0		JRX Mec
Y2 0		

[Projection Shim] タブをクリックし、画面を開きます。
 (2) 画面右下の [Adjust] ボタンをクリックします。Shim 値が自動計算されるので、[Feed] ボタンをクリックします。

[Adjust] and[Feed]

III. 撮像のための調整

③ [Frequency Adjust] タブ画面に戻り、MR 信号を確認します。

④ ピーク波形が細い形 * になった場合 (右:OK 画面例) はシム調整終了

⑤ ピーク波形が幅広い形 * になっている場合 (左:NG 画面例)は①の操作を数回繰り返します。

3回行っても改善しない、もしくはより細かくシム調整をする場合は【III-5】の操作を行います。

⑥ シム調整が終了したら [Close] ボタンを押し、画面を閉じます。

*撮像サンプルによりピークの形は異なります

11. 撮像のための調整

III-5. Shim Adjust (シム調整【手動調整】)

Adjust Wizard					
Control: Manual	[Shii	n Adjust]タブ		
Frequency Adjust Tx Adjust Shim A	djust Projection Shim				
MMR Erequency(MHz)	64,936180	ot .000000		1	
Tx Pulse(dea)	30.00				
Rx Gain (dB)	0.00				
Relavation Delay(msec)	1000.00				
Aco BW(Hz)	10000.00				
Colourated INFO	10000100				
G Shim X(mT/m) 0.0000	00 + -0.040635				
G Shim Y(mT/m) 0.0000	00 + 0.283097				
G.Shim 7(mT/m) 0.0000	00 + -1 265242				
G.3mm 2(m/m)					
	reed				
Offset Arrays					
-0.400000; A Step	21				
-0.320000; Start	-0.4				
-0.280000; End	0.4				
-0.200000; -0.160000; Axis-X	✓ Generate				
-0.120000; -0.080000; 1.0 0	4 0.1 0.03				
-0.040000;		.000000		<u>i i</u>	JRX Medal
0.000000, 4					
Offset Array	: ボックス				Adjust
onsee Anay.					Close

ontrol: Manual					
requency Adjust Tx Adjust Shim Adj	just Projection Shim				
Generic INFO		Plot			
NMR Frequency(MHz)	64.896355	1527447.125000			
Tx Pulse(deg)	30.00				
Rx Gain (dB)	0.00		•		
Relaxation Delay(msec)	1000.00				
Aco BW(Hz)	10000.00				
Hed Differed					
Calcurated INFO					
G.Shim X(mT/m) -0.00000	0 + -0.287960				
G.Shim Y(mT/m) 0.00000	0 + 0.020745				
G.Shim Z(mT/m) 0.00000	0 + 0.205109				
	Feed		•		
		•			
Offset Arrays					
-0.400000; A Step	21	•		1 1	
-0.320000; Start	-0.4				
-0.280000; End	0.4				
-0.200000; Axis-X	✓ Generate				
-0.160000;		•			
-0.080000; 1.0 0.4	0.1 0.03				
-0.000000; 🗸		463089.562500			IR
					_

※自動調整で調整しにくい場合は手動で調整を行います。

- ① [Shim Adjust] タブ画面を表示させます
- ② (Axis-X) を選択します。
- ③ [Generate] ボタンをクリックします
- ④ 画面左の [Offset Arrays] ボックス内に数値が出て いることを確認し、画面右下の [Adjust] ボタンを クリックします。
- ⑤ 自動計算後、右側のグラフエリアに各点の測定値 がプロットされます(左下図参照)。
- ⑥ [Feed] ボタンを押します。
- で極大値が画面中央から大きくずれている場合は、

 もう一度 [Adjust] ボタンをクリックしてピークを

 確認してください。
- ⑧ 同様の操作を (Axis-Y)、(Axis-Z) においても行いま す。
- ⑨ シム調整が終了したら [Close] ボタンを押し、画 面を閉じます。

注意!:MRI 信号例 (ピーク形状はサンプルの大きさ形等で色々なパターンがあります)

IV. 撮像

IV.撮像 IV-1. SCANOGRAM

🎒 🗋 💕 🛃 🦓 🕫							
あー ホーム ポ	ストプロセス 解析	ツール					
ళ Connect ▼ బ ^భ Disconnect	<u>Fl</u>			Fa		✓ MRモニタ ✓ Quモニタ	E
IP 192.168.11.38 MR Spectrometer	共振器/Jイル サン。 (M 基本:	ハルロード オートロード anual) (Automatii) 操作	 画像 スペクトル 新規撮 	機能撮像	マルチビュー	✓ プロパティ 表示	972
Medalist_X 🗴							

HOME	Num	FileName	Comment
	0	SCANOGRAM FOV050	
- JUrit	1	SCANOGRAM_FOV060	
user	2	SCANOGRAM_FOV070	
	3	SCANOGRAM_FOV080	
	4	SCANOGRAM_FOV090	
4 SCANOGRAM_FOV90 5 SCANOGRAM_FOV100			

本 撮 像 の 前 に 位 置 決 め を 行 う た め の 仮 撮 像 (=SCANOGRAM) を行います。

 リボンバー上の「画像」をクリックします
 撮像シークエンスリストが現れるので、 [HOME] → [SCANOGRAM_FOV OO] (FOV のあとの数値はコイルやサンプルの大きさに 応じて選択)を選択し、[Make] をクリックし ます。

*詳細は、Medalist マニュアル「2.3 撮像操作」をご覧下さい。

😧 System ' ProstP Prosty
 The Prost Prosty
 The MR Active ScanParameter 247 0.07 MB / 3000.00 M Stop Run Cancel [1] able Slab Select 20.00 a 🖬 V プロパティ アプリケーション 21 01 11 4 scanning 🧔 🌄 👌 🌮 🗋 🥁 🙀 ダ・ ホーム ポストプロセス 解析 ツール TLATCO-● □ 一括葉i7 Log Vitw ✓ MRE_9
QuE_9 iii 🗎 Image Spectie Propety Propety Plate Holder
 Connectory
 Poston

 00.0
 Unentation
 Tirs & Sag & Cir
 Read Axis (mm)

 100.0
 HOV (read: mm)
 \$50.00
 Phase Axis (mm)

 30.0
 POV (phase: mm)
 \$50.00
 Slec Axis (mm)
 0.00 E.TE(ms) 0.00 Editos(num) 0.00 [2] Echos(num) Enable Slab Select Oblique Slice Axis (deg) Phase Axis (deg) 0.00 Depth (mm) Slice (mm) Read Axis (dec) Technique Data Sequence Enable Single Shot Advanced... Scanning Menu

IV. 撮像

③ 最初に画面【1】が現れるので、画面右部分の [Scan Parameter] の部分をクリックします。

④ すると、画面【2】が出てくるので、 画面右下の [Scanning] ボタンをクリックします。

* Medalist マニュアル「1. オーバービュー」もご参照下さい。拡張子は (.rxd) です。 *撮像画像を別ソフトで読み込むには、次ページの『5-8 解析用ソフト (Realia Pro) インポート用ファイルへの 変換』をご参照下さい。

IV. 撮像

- ⑤ 初めて撮像する際は、撮像の前にファイルの保存を行うためにファイル保存ボックスが立ち上がります。
- ⑥ファイルを保存するフォルダを確認し、適宜
 ファイル名をつけて「保存」ボタンをクリック
 して下さい。
- ⑦ [保存] ボタンをクリックするとファイルが保 存されて撮像が始まります。
- ⑧ Scanning が終了すると画面右側にファイルー 覧が現れます。
- ⑨ファイル一覧の [ScanCard/0] をクリックする
 - と、画面左側に撮像した画像が出てきます。

この画像データがこの後の撮像の位置決め用データと なります。

IV. 撮像

🎒 🗋 💕 🛃 🎲 🗐								
あ ホーム ポ	ストプロセス	解析 ツール	,					
ల్ Connect ▼ బ్లో Disconnect			+ 10		F(c)		 ✓ MRモニタ ✓ Quモニタ 	
IP 192.168.11.38 MR Spectrometer	大城谷/コ1ル	リノフルロード (Manual) 基本操作	Automatic	新規撮像	155月已1951955 {	マルチビュー	✓ プロパティ 表示	010

新規画像				>
- HOME	Num	FileName	Comment	
2D X	0	2D_CE_EOV040_corDV		
- SD R	1	2D_GE_FOV060_corRV		
LISE .	2	2D_GE_FOV080_corRV		
usci	3	2D_GE_FOV100_corRV		
	4	2D_MS_SE_T1W_FOV040_corRV		
	5	2D_MS_SE_T1W_FOV060_corRV		
	6	2D_MS_SE_T1W_FOV080_corRV		
	7	2D_MS_SE_T1W_FOV100_corRV		
	8	2D_MS_SE_T2W_FOV040_corRV		
	9	2D_MS_SE_T2W_FOV060_corRV		
	10	2D_MS_SE_T2W_FOV080_corRV		
	11	2D_MS_SE_T2W_FOV100_corRV		
File Plain	Auto Re	ference Linkage	Make	キャンセル

- IV-2. 本撮像
- IV-2-1. プリセット(シークエンス)の選択
 - ① SCANOGRAM 撮像完了後、もう一度「画像」を
 - クリックし、撮像シークエンスを表示させます。 ② 撮像したいシークエンス (この例では「2D_GE_ FOV60_corRV」)を選択して右下の [Make] を クリックします。
 - ③ SCANOGRAM 時と同じように画面右部分の [Scan Parameter]の部分をクリックします。
 - ④画面左下部に撮像パラメータが表示されます。

*各パラメータについては、Medalist マニュアル「3 リファレンス」もご覧下さい。

Generic Acquisition/Encode Field/Ex	tention Expert MRS Presatural	ion	
Generic	Geometory	Position	Extention
TR (msec) 250.0	Orientation CoronalRV V	Read Axis (mm) 0.00	E.TE(ms)
TE (msec) 6.0	FOV (read: mm) 60.00	Phase Axis (mm) 0.00	Echos(num)
FA (deg) 90.0	FOV (phase: mm) 60.00	Slice Axis (mm) 0.00	Echos(hainy
Technique	Lock FOV Relate FOV	Oblique	Enable Sla
E.Factor 4	Slice (mm) 1.00	Slice Axis (deg) 0.00	Slab Depth (mm)
Effective TE(msec) 18.0 V		Phase Axis (deg) 0.00	
Technique	Slice Order Zigzag V	Read Axis (deg) 0.00	
Data 2D Imaging \checkmark	Slice Num 12		
Sequence Gradient Echo 🗸	Interval (mm) 0.50	Enable Single Shot	
Menu			Advanced

[Generic] タブ	
TR	繰り返し時間
TE	エコー時間
FA	フリップ角
Orientation	撮像断面 Coronal/Sagittal/Transvers
Slice	スライス厚
Slice Num	スライス枚数
Interval	スライス間ギャップ
Position	位置の微調整 (前後、左右)
Oblique	位置の微調整(角度)

Generic Acquisition/Encode Fi	ield/Extention Expert MRS	Presaturati	on	
Encode Option	Acquisition		Matrix	External F0/B0 Lock
Encode order Sequential	 Accumulation 	1	Matrix Size 256 🗸	Use External F0 L
Phase. # 1	128 Acq Bandwidth (Hz)	50000.0	Auto Matrix	U-Step
Slab Phase. #	1 A	uto AcqBW	DECT Making And	V-Step
K-space reduction	Sampling Num	256	RECT MADIX 1:1	v Step
Reduction Rate	AMI (%)	0.00	(Read:Phase) 🗹 Auto Rect	A-Step
K-space Rev.	Preparation Pulse	3		
	FIR Select 30	0kHz 🗸 🗸		
	Read OverSmp.	1		
Menu				Advance

[Acquisition/En	icode] タブ
Accumulation	積算回数 (NX)
その他のパラメ	ータは特に変更しません。

IV-2-2. 微調整

🎒 | 🗋 💕 🚽 🎒 🕫

IV. 撮像

- 撮像断面 (Coronal Sagittal Transvers) を決 定します。
- ② スライス厚とスライス枚数、スライスギャッ プなどを SCANOGRAM 画像から確認し、最 適な位置と角度を決めます。
- ③ 位置と角度は画面上からマウス操作で調整 可能です。〇は<mark>角度変更、+ は位置変更</mark>に使 用します。
- ④ 他断面の画像は、マウスホイールを回転さ せることで表示して、位置と角度を微調整 します。
- ⑤ 各パラメータが決定したら [Scanning] ボタ ンをクリックし撮像を開始します。

IV-2-3. 撮像断面について

撮像の方向には「周波数エンコード」と「位相エンコード」があ ります。Medalist では Samping の数値が周波数エンコードを、 Phase の数値が位相エンコードを決定します。

Medalist の [Orientation] で は Transvers/Sagittal/Coronal と TransversRV/SagittalRV/CoronalRV から選択ができます。 Transvers/Sagittal/Coronal は周波数エンコードと位相エンコード をそのまま使用し、TransversRV/SagittalRV/CoronalRV ではそれ ぞれ入れ替えて撮像を行います。

細長いものを撮像する場合に位相エンコードが長い方向にするとう まく撮像ができません(アーチファクトが生じる傾向)。そこで、 短い方向に位相エンコードを、長い方向に周波数エンコードがくる ように Orientation では RV の有無で撮像の向きを決定します。

IV-2-4. 撮像画像の確認

IV. 撮像

- 撮像終了後画面右側に自動的に画像ファイル一覧が表示されます。
 [ScanCard/0]を選択するとすべてのスライス画面が表示されます。1枚ずつ表示する場合は [2D_data] を選択します。
- ② 撮像データは、1回の Scan で1シリー ズとして保存されます。

V. データ V-1. ファイル保存

最初の測定を開始するときにファイル名を指定して保存 しています。撮像がすべて終了したら上書き保存をし て、すべてのデータを保存してください。なお、自動 保存の機能はないので、測定途中で PC が停止あるいは Medalist が終了した際にはそれ以前に撮像したデータは 保存されません。こまめに上書き保存をすることを推奨 します。

ファイルを上書き保存する際は、右側のカラムのいずれ かをクリックして[保存]ボタンをクリックしてください。 (いずれかを選択していない場合、[保存] ボタンはクリッ クできません。)

* MR VivoLVA の保存ファイルは、1つのプレートホル ダーに含まれる撮像パラメータおよび画像データすべて がまとめて保存されます。

* Medalist マニュアル「1. オーバービュー」もご参照下さい。

7262 KW 7-5 11 4 6 76 12 75 V. データ

V. データ

V-2. ファイルのエクスポート

_			
^	Data Plate	Date	
	Plate Holder		
	🖬 Imaging Plate	金 3/02/2018 04:13 午後	
	ScanParameter: SCANOGRAM		
	-g ScanCard/0		
	E Imaging Plate	火 9/20/2022 12:16 午後	
	– ScanParameter:		
	L DataHolder		
	E Imaging Plate	火 9/20/2022 12:19 午後	
	- ScanParameter:		
	Imaging Plate	火 9/20/2022 03:39 午後	
	- ScanParameter:		,石クリック
	L⊒ DataHolder		
	La ScanCard/0		
	- 2D_Data	Add	
	- 2D_Data	Export Setting	
	- 2D_Data	Delete	
	- 2D_Data	Innet	
	– 2D_Data	Tree Save	
	- 2D_Data	Export as DICOM	
	- 2D_Data	Export as ASC(Delta)	
	- 2D_Data		
	- 2D Data		
	_ 2D_Data		

- ① エクスポートしたいファイルの [ScanCard/] の部分を 選択し、マウスで右クリックします。
- ボックスが表示されるので、[Export Setting] をクリックします。
- ③ [Data Exporter] の画面が出てきます。[…] をクリックして、ファイルを保存する場所を選び、ファイル名を入力して「保存」をクリックします。
- ④図のように指定します。
- ⑤ [Export] をクリックします。

utput File D:¥MedalistData¥data					
rmat	Orientation				
Text Text Option Dividing word	Phase rev Slab reve	erse rese			
Binary Binary Option Control 2008	Re-Scaler Enable Ru Set Max	Scaling	5637.510742		
Done Float_32	Bit Image	May Intensity	0.000000		
Compatible to Intage Realia	PRO PROC-Power PROC-U/V	5637.510742 0.11			
ORAW Data	PROC-Phase	0.11		~	
Image Data U,V Data	3D-Orientation Front View	- Тор \ ~	/iew		ĺ
Power Data Data		Front	View Side V	fiew	

V.データ
 ⑤ ファイルは、同じ名前で拡張子の違う 2 種類が作成されます。
 (.sch) が画像の生データファイル、(.rpf) が撮像条件が記載されたファイルです。(.sch) ファイルはバイナリ形式のため、
 汎用の画像ソフト等でも読込み可能です。

📕 🛛 🛃 📮 🛛 MedalistData					-	o x
ファイル ホーム 共有 表対	7					× 😲
← → • ↑ 📕 > PC > D4	ATADRIVE1 (D:) > MedalistData					
🔤 ピクチャ	★ ^ 名前		更新日時	種類	サイズ	
📳 ビデオ	🖈 🛄 data m	f	2023/01/13 13:37		6 KR	
🐥 ダウンロード	A data.sc	h	2023/01/13 13:37	SQL Server Replica	1,536 KB	
📜 マニュアル	*					

V-3. 画像サイズについて

右図の画像サイズは縦 256 ×横 128 画素です。FOV60 で撮像した場合、 60mm ÷ 256 画素で、1 画素 0.234mm となります。この値を解析ソフトイ ンポート時に設定すると距離、面積等の計算が簡単になります。

注意!

奥行方向については、スライス厚+ギャップとなりますので、スライス厚 1mm では、デフォルトのギャップ 0.5mm を加えて 1.5mm としなければ正 しい比率の 3D 画像になりません (2D シークエンスの場合)。

V. データ

V-4. ImageJ にインポートする

① File → Import → Raw と進みます。

② V-2 で保存したフォルダを開きファイル(.sch)を選択して[開く]ボタ

ンをクリックします。

🛓 ImageJ				
File Edit Image Process A	nalyze Plugins Windo	w Help		
New •	A & 🕅 🖸 Q	Dev 🖉	8 1	≫
Open Ctrl+O	ght click to switch)			
Open Next Ctrl+Shift+O				
Open Samples				
Open Recent				
Import	Image Sequence			
Show Folder	Raw			
Close Ctrl+W Close All Ctrl+Shift+W Save Ctrl+S Save As • Revert Ctrl+Shift+R Page Setup Print	LUT Text Image Text File Results Table URL Stack From List TIFF Virtual Stack			
Quit	AVI XY Coordinates			
	Exif Data NIfTI-Analyze			

V . テ

6/12; 128x256 pixels; 32-bit; 1.5MB

- ③ Image type は [32-bit Real] を選択します。
- ④ Width と Height は撮像画像の左下の数値を入力します。(128 × 256 の場合は Width が 128、Height が 256 です。)
- ⑤ Number of images は撮像画像の枚数です。Slice に入力した数値、もしくは撮像画像の 左上に表示されている数値 (S#0/12 の場合は 12) を入力します。
- ⑥ Little-endian byte order にチェックを入れます。
- ⑦ [OK] をクリックすると画像が Stack された状態で開きます。

VI. 便利な機能

VI. 便利な機能 VI-1. 【マルチビュー】

マルチビューをクリックすると [View Select] が開きます。1 画面中に表示できる画面数の組み合わせが 表示されるので、1 画面で表示させたい画面数をクリックします。

 3×4

VI. 便利な機能

- VI-2. 【拡大縮小機能】
- VI-2-1. 画面表示の拡大縮小

マウスの中央のホイールを回転させるとすべての画像の拡大縮小ができます。倍率は画面右下に表示されま す。Shift を押しながらマウスホイールを回転させると1枚だけ拡大縮小ができます。

VI-2-2. 画面のコピー方法

①表示している画面全てをコピー

右クリックをして [Copy Multi] をクリックすると表示している画像がまとめてコピーされます。

② 特定の1 画面だけをコピー

右クリックをして [Copy Single] をクリックすると特定の1枚の画像がパラメータを含めてコピーされます。 ③1 画面の画像のみをコピー

右クリックをして[Copy Image]をクリックすると特定の1枚の撮像画像のみがコピーされます。

コピーした画像は、ペイント 🧳 等に貼りつけて保存してください。

VII.資料

VII. 資料 VII-1. MRVivoLVA シークエンス例(デフォルトシークエンスセット) ^{VII-1-1.} HOME

新規画像				×
新規画像 → 2D系 → 3D系 → FSE user	Num 0 1 2 3 4 5	FileName SCANOGRAM_FOV050 SCANOGRAM_FOV060 SCANOGRAM_FOV070 SCANOGRAM_FOV080 SCANOGRAM_FOV090 SCANOGRAM_FOV100	Comment SCANOGRAM シークエンス FOV 以外は同一パラメータ	
File Plain V	Auto Re	eference Linkage	Make ギャン1	2.16

VII-1-2. 2D 系

規画像				×
- HOME - 3D系 - FSE - user	Num Fill 0 2D 1 2D 2 2D 3 2D 4 2D 5 2D 6 2D 7 2D 8 2D 10 2D 11 2D	eName 0_GE_FOV040_corRV 0_GE_FOV060_corRV 0_GE_FOV080_corRV 0_GE_FOV100_corRV 0_GE_FOV100_corRV 0_MS_SE_T1W_FOV040_corRV 0_MS_SE_T1W_FOV080_corRV 0_MS_SE_T1W_FOV000_corRV 0_MS_SE_T2W_FOV040_corRV 0_MS_SE_T2W_FOV060_corRV 0_MS_SE_T2W_FOV080_corRV 0_MS_SE_T2W_FOV080_corRV _MS_SE_T2W_FOV100_corRV	Comment 2D_GE シークエンス FOV 以外は同一パラメ 2D_SE シークエンス FOV 以外は同一パ 2D_SE シークエンス FOV 以外は同一パ	ス ータ (T1 強調) ラメータ (T2 強調) ラメータ
File Plain 🗸	Auto Refere	nce Linkage	Make	キャンセル

VII-1-3. 3D 系

HOME	Num	FileName	Comment	
2D系	0	3D_FIR_T1W_TI180_FOV060_corRV		
3Dガヤ	1	3D_GE_FA40_FOV040_corRV	】 3D_GE シークエンス	(FLASH)
FSE	2	3D GE FA40 FOV060 corRV	FOV 以外は同一パ=	ラメータ
user	3	3D GE FA40 FOV080 corRV		
	4	3D GE FA40 FOV100 corRV		
	5	3D GE FOV040 corRV		(工1 2会) (工1 2会) (工1 2会) (工1 2会) (工1 2合) (_{_{_{11}}}) (_{_{11}}) (_
	6	3D GE EOV060 corRV		
	7	3D GE EOV080 corRV	FOV 以外は同一ハラ	フメーダ
	8	3D_GE_EOV100_corRV		
	9	55_52_1 01205_contr		
	10	3D_SE_E0V060_corRV	3D_SE シークエ	ンス
	11	3D_SE_FOV080_corRV	FOV 以外は同一パラ	ラメータ
	11	3D_SE_FOV100_corRV		
	12	3D_SE_FOV100_C0RV		

VII-1-4. FSE

HOME	Num	FileName	Comment	
2D系	- Additional - Add	ESE 2D TIW FOUND corPV	7 2D ESE $2 - 2 + 2 = 2$	(T1 強調)
3D系	1	ESE 20 T1W_F0V040_C0TRV		(***)」(**) / (***) /
FSE	1	ESE 20 T1W_F0V000_corRV		
user	2	ESE 2D T2W EOV040 corPV		(エンコン)三日)
	3	ESE 20 T2W_F0V040_C0TRV	$2D_FSE \overline{y} = \overline{y} \pm \overline{y} \overline{x}$	(12 独調)
	5	ESE 20 T2W_F0V000_corRV	— FOV 以外は同一パラ	メータ
	5	ESE 2D T1W EOV040 corRV	3D ESE シークエンス	(T1)
	7	ESE 3D T1W_F0V040_C0TRV		(二近前)
	9	ESE 3D T1W_FOV080_corRV	FUV 以外は同一ハラ	×-×
	0	ESE 3D T2W EQV040 corRV		(T2 論調)
	10	ESE 3D T2W_EOV060_corRV		
	11	ESE 3D T3W E0V080 corPV	- FOV 以外は同一ハラ	×-×
	11	FSE_3D_12W_FOV080_C0FKV	_	

VII-2. タブ例 VII-2-1. Generic タブ[2D]

TR	250.0	Orientation Coronal	RV V Read Axis	0.00	
TE	6.0		co.oo Phase Avis	0.00 E.TE(ms)	20.0
EA (dea)	90.0	FOV (read:	60.00 Pliase Axis	Echos(num)	1
echnique		Lock FOV	Relate FOV Oblique		nable Slab Select
E.Factor	4	Slice	1.00 Slice Axis	0.00 Slab Depth	20.00
Effective TE	(msec) 18.0 ~	Slice ZigZag	✓ Phase Axis (deg)	0.00	
echnique		Slice	Read Atis (deg)	0.00	
Sequence	2D Imaging ~ Gradient Echo ~	Interval	0.50 En	able Single Shot	
Menu				Adva	anced Scanning

Generic Ac	quisition/Encode Field/Ex	tention Expert	MRS Presaturatio	n	[Generic] タ	ブ	
Generic		Geometory		Position			
TR	250.0	Orientation	CoronalRV V	Read Axis	TR	繰り返し時間	
TE	6.0	FOV (read:	Transvers Sagittal	Phase Axis			
FA (deg)	90.0	FOV (phase:	Coronal TransversRV	Slice Axis	TE	エコー時間	
Technique		Lock F	Sagitta RV	Oblique			
E.Factor	4	Slice	CoronalRV	Slice Axis	FA	フリップ角	
Effective 1	TE(msec) 18.0 V	Cline	Trs & Sag	Phase Axis (deg)			
Technique		Slice	Cor & Trs	Read Axis (deg)	Orientation	(撮像断面	CoronalRV ,Sagital RV,Transvers)
Data	2D Imaging V	Slice	Trs & Sag & Cor				
Sequence	Gradient Echo $$	Interval	0.50	Enable Sing	Slice	スライス厚	
Menu					Slice Num	スライス枚数	攵
					Interval	スライス間キ	デャップ

VII-2-2. Generic タブ [3D]

VII.資料

Generic Acquisition/Encode I Generic TR 2 TE 5A (deg) 5 Technique E.Factor 5 Effective TE(msec) 18.0 Technique Data 3D Imaging	Field/Extention Expert MRS Presaturation Geometory 0rientation CoronalRV FOV (read: 60.00 FOV (phase: 60.00 Lock FOV Relate FOV Slice 1.00 Slice 2igZag	Position Read Axis Phase Axis Slice Axis Oblique Slice Axis Phase Axis (deg) Read Axis (deg)	Extention E.TE(ms) Echos(num 0.00 0.00 0.00 0.00 0.00) 20.0 Jm) 1 Enable Slab Select h 20.00
Menu Generic Acquisition/Encode Generic TR TE	Field/Extention Expert MRS Presaturation Geometory 250.0 Orientation CoronalRV 6.0 Transvers	n Position Read Axis	0.00 Extention E.TE(ms)	Advanced Scanning
FA (deg) Technique E.Factor Effective TE(msec) 18.0 Technique Data 3D Imaging Sequence Gradient Ech	90.0 FOV (read: Sagittal 90.0 FOV (phase: Coronal TransversRV Lock R SagittalRV 4 Slice 1.00 Slice ZigZag Slice 12 Interval 0.50	Phase Axis Slice Axis Oblique Slice Axis Phase Axis (deg) Read Axis (deg) Enable S	ieneric]タス R R	ブ 繰り返し時間 エコー時間 フリップ角
Menu		0 SI	rientation ab Depth	 (撮像断面 CoronalRV ,Sagital RV,Transvers) 奥行方向サイズ

VII-2-3. Acquisition/Encode タブ例

ncode order Sequential V	Accumulation 1	Matrix Size 256 V	Use External F0 Lock	
Phase. # 128 Nab Phase. # 1 K-space reduction Reduction Rate	Acq Bandwidth (Hz) 50000.0 Auto AcqBW Sampling 256 AMI (%) 0.00 Preparation Pulse 3	Auto Matrix RECT Matrix 1:1 ~ (Read:Phase) Auto Rect	U-Step V-Step A-Step	0
K-space Rev. 3D のみ使用 [2D では 1]	FIR Select 300kHz V Read OverSmp. 1			
Menu			Advanced	Scanning

[Acquisition/Encode] タブ				
Accumulation 積算回数 (NX)				
Slab Phase	スライス枚数(3 D のみ使用)			
その他のパラメータは特に変更しません。				

VII-3. 3D 解析ソフトのご紹介

VII-4. (ご参考) Realia Pro へのデータインポート時サイズ早見表

INTAGE Realia Pro 1	NTAGE Realia Pro インポート時サイズ早見表							
撮像シークエンス	FOV	AP(mm)	RL(mm)	FH(mm)				
2D 系シークエンス	40	0.156	0.156	スライス厚(Thickness)+0.5mm(スライスギャップ)				
3D 系シークエンス	40	0.156	0.156	20(奥行)÷スライス枚数				
2D 系シークエンス	60	0.234	0.234	スライス厚(Thickness)+0.5mm(スライスギャップ)				
3D 系シークエンス	60	0.234	0.234	30(奥行)÷スライス枚数				
2D 系シークエンス	80	0.313	0.313	スライス厚(Thickness)+0.5mm(スライスギャップ)				
3D 系シークエンス	80	0.313	0.313	40(奥行)÷スライス枚数				
2D 系シークエンス	100	0.391	0.391	スライス厚(Thickness)+0.5mm(スライスギャップ)				
3D 系シークエンス	100	0.391	0.391	50(奥行)÷スライス枚数				

リアリアインポート設定:幅 :128pixel、高さ 256pixel(SCANOGRAM は、幅 :256pixel、高さ 256pixel) その他の FOV での計算方法:.rpt ファイル記載のパラメータから計算する

2D 系シークエンス:Ap,RL=(ReadFOV.mm) ÷ 256、FH=(Slice Thickness.mm.)+(SliceInterval.mm.)

3D 系シークエンス:Ap,RL=(ReadFOV.mm) ÷ 256、FH=(SlabDeath.mm.)+(SlabPhase.num.)

VII-5. (ご参考) 撮像パラメータ記載ファイル VII-5-1. (.rpf ファイル例① 2D 系シークエンス)

JRx(R) Medalist Parameter File-Generic Parameter:

Acquisition Parameter:

}

}

RF Parameter:

{

 SequenceCode.enum = 177;
 ObliqueS

 TR.msec.Float = 500.000000;
 ObliqueF

 TE.msec.Float = 6.000000;
 ObliqueF

 RFBandwidth.Hz.Float = 1500.000000;
 OffsetSlid

 FlipAngle.deg.Float = 90.000000;
 OffsetPh

 ReadFOV.mm.Float = 60.000000;
 OffsetRes

 PhaseFOV.mm.Float = 60.000000;
 SlabDept

 SliceThickness.mm.Float = 1.000000;
 }

 SliceThickness.mm.Float = 1.000000;
 }

 Chable-STScan.bool = false;
 Slice Parameter:

 ScanType.enum = 1;
 {

AcgBW.Hz.Float = 50000.000000;

AcqNumber.num.Int = 256;

PhaseEncode.num.Int = 128;

PrepulationPulse.num.Int = 3;

RFPhase.deg.Float = 0.000000;

AutoFrequency.Bool = true;

AutoGain.Bool = false;

RFFrequency.MHz.Float = 64.091675;

RFReceiverGain.dB.Float = 0.000000:

MatrixSize.num.Int = 5;

Average.num.Int = 4;

AutoMatrix.Bool = true;

Scalifype.enum = 1; EchoFactor.Int = 4; EffectiveTE.Float = 20.0000 スライス間ギャップ SliceInterval.mm.Float = 0.500000;

SlabPhase.num.Int = 1; SlabSelect.Bool = false;

OrientationID.Enum = 165;

ObliqueSlice.deg.Float = 0.000000;

ObliquePhase.deg.Float = 0.000000;

ObliqueRead.deg.Float = 4.500000;

OffsetSlice.mm.Float = 0.000000;

OffsetPhase.mm.Float = 0.000000;

OffsetRead.mm.Float = 0.000000;

SlabDepth.mm.Float = 20.000000;

DWI Parameter:

Geometry Parameter:

DWIStrength.Float = 3.000000; DWIDirection.Int = 1; DWIDuration.Float = 5.000000; EnableDWI.Bool = false;

EPR Parameter:

TEPR.msec.Float = 150.000000; SettlingTime.msec.ULong = 0; PEDRImode.Bool = false; ESRFrequency.MHz.Float = 565.000000; ESRAmplitude.dB.Float = -4.000000; ESRField.mT.Float = 20.000000;

VII.資料

External Parameter:

```
TI.msec.Float = 0.000000;
InversionPulse.Bool = false;
PhaseEncodeOrder.Enum = 1;
AcqMI.percent.Float = 0.000000;
HalfScan.Bool = false;
ExternalTrigger.Bool = false;
TriggerDelay.usec.ULong = 0;
SliceOrder.Enum = 1;
EnableCHESS.bool = false;
```

Expert Parameter:

```
CrasherGradient.Bool = true;
CrasherGradientDirection.Enum = 3;
CrasherGradientStrength.mT.Float = 20.000000;
CrasherGradientDuration.msec.Float = 5.000000;
UserShimX.mT.Float = 0.000000;
UserShimY.mT.Float = 0.000000;
UserShimZ.mT.Float = 0.000000;
```

DNP Parameter:

DNPFieldNumber.int = 0; RotateSpeed.mps.float = 1.000000;

Realia Pro インポートサイズ計算方法 (2D 系): [AP,RL] = (FOV) ÷ 256 [FH] = (スライス厚) + (スライス間ギャップ)

VII-5-2. (.rpf ファイル例② 3D 系シークエンス)

<pre>{ CrientationID.Enum = 166; OrientationID.Enum = 166; ObliqueSlice.deg.Float = 0.0000 TR.msec.Float = 2000.000000; TE.msec.Float = 12.000000; RFBandwidth.Hz.Float = 1500.000000; FlipAngle.deg.Float = 90.000000; FlipAngle.deg.Float = 90.000000; FlipAngle.deg.Float = 90.000000; PhaseFOV.mm.Float = 60.000000; PhaseFOV.mm.Float = 1.000000; SliceThickness.mm.Float = 1.000000; SliceThickness.mm.Float = 1.000000; Enable-STScan.bool = false; ScanType.enum = 2; EchoFactor.Int = 32; EffectiveTE.Float = 72.000000; Acquisition Parameter: { AcqBW.Hz.Float = 50000.000000; AcqRumber.num.Int = 256; MatrixSize.num.Int = 5; PhaseEncode.num.Int = 128; Average.num.Int = 1; DWIDration.Float = 3.000000; PhaseEncode.num.Int = 128; Average.num.Int = 1; DWIDuration.Float = 5.00000; PrepulationPulse.num.Int = 7; AutoMatrix.Bool = true; } } </pre>	etry Parameter:		
FOV PeadFOV.mm.Float = 60.000000; PhaseFOV.mm.Float = 60.000000; SlabDepth.mm.Float = 0.00000 SliceThickness.mm.Float = 1.000000; SlicePhickness.mm.Float = 1.000000; SlicePhickness.mm.Float = 30.0000 SliceThickness.mm.Float = 1.000000; Slice Parameter: Slice Parameter: ScanType.enum = 2; { EchoFactor.Int = 32; SliceNumber.num.Int = 1; EffectiveTE.Float = 72.000000; SlabPhase.num.Int = 1; Acquisition Parameter: SlabPhase.num.Int = 128; AcqBW.Hz.Float = 50000.000000; DWI Parameter: AcqNumber.num.Int = 256; { MatrixSize.num.Int = 5; DWIStrength.Float = 3.000000; PhaseEncode.num.Int = 128; DWIDirection.Int = 1; Average.num.Int = 1; DWIDuration.Float = 5.000000; PrepulationPulse.num.Int = 7; AutoMatrix.Bool = true; AutoMatrix.Bool = true; } EPR Parameter:	00;)000;)00;)0;)0;		
SliceThickness.mm.Float = 1.000000; SliceThickness.mm.Float = 1.000000; Enable-STScan.bool = false; ScanType.enum = 2; EchoFactor.Int = 32; EffectiveTE.Float = 72.000000; Acquisition Parameter: { AcqBW.Hz.Float = 50000.000000; AcqNumber.num.Int = 256; MatrixSize.num.Int = 5; PhaseEncode.num.Int = 128; Average.num.Int = 128; Average.num.Int = 1; PrepulationPulse.num.Int = 7; AutoMatrix.Bool = true; } Slice Parameter: { SliceNumber.num.Int = 1; DWI Parameter: DWIStrength.Float = 3.000000; DWI Parameter: EPR Parameter: }	0; 00·		
EffectiveTE.Float = 72.000000; SliceInterval.mm.Float = 0.5000 Acquisition Parameter: SlabPhase.num.Int = 128; { AcqBW.Hz.Float = 50000.000000; DWI Parameter: { AcqNumber.num.Int = 256; Image: Comparison of the state of th	,		
<pre> } Acquisition Parameter: { AcqBW.Hz.Float = 50000.000000; AcqNumber.num.Int = 256; MatrixSize.num.Int = 5; PhaseEncode.num.Int = 128; Average.num.Int = 128; Average.num.Int = 1; PrepulationPulse.num.Int = 7; AutoMatrix.Bool = true; } SlabPhase.num.Int = 128; Levent and the second and</pre>)00;		
{StabSelect.bool = latse,{}AcqBW.Hz.Float = 50000.000000;DWI Parameter:AcqNumber.num.Int = 256;{MatrixSize.num.Int = 5;DWIStrength.Float = 3.000000;PhaseEncode.num.Int = 5;DWIDirection.Int = 1;Average.num.Int = 1;DWIDirection.Int = 1;Average.num.Int = 1;DWIDuration.Float = 5.000000;PrepulationPulse.num.Int = 7;EnableDWI.Bool = false;AutoMatrix.Bool = true;}			
AcqBW.Hz.Float = 50000.000000; AcqNumber.num.Int = 256; MatrixSize.num.Int = 5;DWI Parameter:MatrixSize.num.Int = 5; PhaseEncode.num.Int = 128; Average.num.Int = 1; PrepulationPulse.num.Int = 7; AutoMatrix.Bool = true;DWI Duration.Float = 5.000000; EPR Parameter:WIDURATIONFloat = 1; PREPULATIONDWI Duration.Float = 5.000000; EPR Parameter:			
RF Parameter:{{TEPR.msec.Float = 150.000000;RFFrequency.MHz.Float = 64.094955;SettlingTime.msec.ULong = 0;RFPhase.deg.Float = 0.000000;PEDRImode.Bool = false;RFReceiverGain.dB.Float = -10.000000;ESRFrequency.MHz.Float = 565	.000000		
AutoFrequency.Bool = true; AutoGain.Bool = false; } ESRAmplitude.dB.Float = -4.000 ESRField.mT.Float = 20.000000; })000;		

External Parameter:

{

TI.msec.Float = 0.000000; InversionPulse.Bool = false; PhaseEncodeOrder.Enum = 1; AcqMI.percent.Float = 0.000000; HalfScan.Bool = false; ExternalTrigger.Bool = false; TriggerDelay.usec.ULong = 0; SliceOrder.Enum = 1; EnableCHESS.bool = false;

Expert Parameter:

CrasherGradient.Bool = true; CrasherGradientDirection.Enum = 3; CrasherGradientStrength.mT.Float = 40.000000; CrasherGradientDuration.msec.Float = 5.000000; UserShimX.mT.Float = 0.000000; UserShimY.mT.Float = 0.000000; UserShimZ.mT.Float = 0.000000;

VII.資料

DNP Parameter:

}

{

DNPFieldNumber.int = 0; RotateSpeed.mps.float = 1.000000; 本資料は、実験小動物用 MRI『MR VivoLVA ®』の撮像操作手順をまとめたものです。

それぞれの詳細につきましては、

♦ Medalist マニュアル

◆ 小動物用 MRI ハードウェアマニュアル

◆ 小動物用 R F コイル調整マニュアル

をご参照下さい。

お問い合わせ先:

日本レドックス株式会社